Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/2725
Nhan đề: | Neural Sequence Labeling Based Sentence Segmentation for Myanmar Language |
Tác giả: | Ye, Kyaw Thu Thura, Aung Thepchai, Supnithi |
Từ khoá: | Sentence Segmentation Neural Sequence Labeling Myanmar language CRF NCRF++ CNN Bi-LSTM |
Năm xuất bản: | thá-2023 |
Nhà xuất bản: | Springer Nature |
Tóm tắt: | In the informal Myanmar language, for which most NLP applications are used, there is no predefined rule to mark the end of the sentence. Therefore, in this paper, we contributed the first Myanmar sentence segmentation corpus and systematically experimented with twelve neural sequence labeling architectures trained and tested on both sentence and sentence+paragraph data. The word LSTM + Softmax achieved the highest accuracy of 99.95% while trained and tested on sentence-only data and 97.40% while trained and tested on sentence + paragraph data. |
Mô tả: | Lecture Notes in Networks and Systems (LNNS, volume 734); CITA: Conference on Information Technology and its Applications; pp: 285-296. |
Định danh: | https://link.springer.com/chapter/10.1007/978-3-031-36886-8_24 http://elib.vku.udn.vn/handle/123456789/2725 |
ISBN: | 978-3-031-36886-8 |
Bộ sưu tập: | CITA 2023 (International) |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.