Please use this identifier to cite or link to this item: https://elib.vku.udn.vn/handle/123456789/2725
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYe, Kyaw Thu-
dc.contributor.authorThura, Aung-
dc.contributor.authorThepchai, Supnithi-
dc.date.accessioned2023-09-26T01:36:49Z-
dc.date.available2023-09-26T01:36:49Z-
dc.date.issued2023-07-
dc.identifier.isbn978-3-031-36886-8-
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-3-031-36886-8_24-
dc.identifier.urihttp://elib.vku.udn.vn/handle/123456789/2725-
dc.descriptionLecture Notes in Networks and Systems (LNNS, volume 734); CITA: Conference on Information Technology and its Applications; pp: 285-296.vi_VN
dc.description.abstractIn the informal Myanmar language, for which most NLP applications are used, there is no predefined rule to mark the end of the sentence. Therefore, in this paper, we contributed the first Myanmar sentence segmentation corpus and systematically experimented with twelve neural sequence labeling architectures trained and tested on both sentence and sentence+paragraph data. The word LSTM + Softmax achieved the highest accuracy of 99.95% while trained and tested on sentence-only data and 97.40% while trained and tested on sentence + paragraph data.vi_VN
dc.language.isoenvi_VN
dc.publisherSpringer Naturevi_VN
dc.subjectSentence Segmentationvi_VN
dc.subjectNeural Sequence Labelingvi_VN
dc.subjectMyanmar languagevi_VN
dc.subjectCRFvi_VN
dc.subjectNCRF++vi_VN
dc.subjectCNNvi_VN
dc.subjectBi-LSTMvi_VN
dc.titleNeural Sequence Labeling Based Sentence Segmentation for Myanmar Languagevi_VN
dc.typeWorking Papervi_VN
Appears in Collections:CITA 2023 (International)

Files in This Item:

 Sign in to read



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.