Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/2746
Nhan đề: A Comparative Study of Wrapper Feature Selection Techniques in Software Fault Prediction
Tác giả: Nguyen, Thanh Long
Ha, Thi Minh Phuong
Nguyen, Thanh Binh
Từ khoá: Software fault prediction
feature selection
Wrapper
VanillaGAN
dataset
Năm xuất bản: thá-2023
Nhà xuất bản: Springer Nature
Tóm tắt: Software fault prediction aims to classify whether the module is defective or not-defective. In software systems, there are some software metrics may contain irrelevant or redundant information that leads to negative impact on the performance of the fault prediction model. Therefore, feature selection is an method that several studies have addressed to reduce computation time, improve prediction performance and provide a better understanding of data in machine learning. Additionally, the presence of imbalanced classes is one of the most challenge in software fault prediction. In this study, we examined the effectiveness of six different wrapper feature selection including Genetic Algorithm, Particle Swarm Optimization, Whale Optimization Algorithm, Cuckoo Search, Mayfly Algorithm and Binary Bat Algorithm for selecting the optimal subset of features. Then, we applied VanilaGAN to train the dataset with optimal features for handling the imbalanced problem. Subsequently, these generated training dataset and the testing dataset are fed to the machine learning techniques. Experimental validation has been done on five dataset collected from Promise repository and Precision, Recall, F1-score, and AUC are evaluation performance measurements.
Mô tả: Lecture Notes in Networks and Systems (LNNS, volume 734); CITA: Conference on Information Technology and its Applications; pp: 62-73.
Định danh: https://link.springer.com/chapter/10.1007/978-3-031-36886-8_6
http://elib.vku.udn.vn/handle/123456789/2746
ISBN: 978-3-031-36886-8
Bộ sưu tập: CITA 2023 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.