Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/745
Nhan đề: Multilayer Perceptron Method of Artificial Neural Network in Classifying Concrete Compressive Strength
Tác giả: Pham, Thi Phuong Trang
Từ khoá: Concrete compressive strength
multilayer perceptron
support vector machine
Navie Bayes
Decision Tree
Năm xuất bản: 2020
Nhà xuất bản: Da Nang Publishing House
Tóm tắt: Compressive strength is a basic feature of concrete, it reflects the bearing capacity of concrete. Therefore classifying concrete compressive strength (CCS) plays a vital role. When CCS classification accuracy is improved which will be grounded to calculating bearing capacity, deformation of concrete and reinforced concrete structures better. The objective of this paper is to use multilayer perceptron (MLP) model for classifying CCS. The predictive accuracy of model was compared with several other model including support vector machine (SVM), Navie Bayes (NB) and decision tree (DT). Analytical results showed the MLP model was superior to other comparative models for concrete dataset. Particularly, the MLP was the best model achieving the highest results (92.524% of accuracy). Therefore, MLP model is considered a suitable tool to classify CCS dataset.
Mô tả: Scientific Paper; Pages: 82-87
Định danh: http://elib.vku.udn.vn/handle/123456789/745
ISBN: 978-604-84-5517-0
Bộ sưu tập: CITA 2020

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.