Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/4025
Nhan đề: Building Melasma Prediction Model Using Catboost Algorithm
Tác giả: Ho, Van Lam
Tran, Xuan Viet
Huynh, Ngoc Khoa
Từ khoá: CatBoost algorithm
Melasma disease
Machine learning algorithm
Prediction Melasma model
Boosting algorithms
Năm xuất bản: thá-2024
Nhà xuất bản: Vietnam-Korea University of Information and Communication Technology
Tùng thư/Số báo cáo: CITA;
Tóm tắt: This study aims to build predict Melasma model based on Catboost machine learning algorithm on users' data combined with medical practice data community by dermatologists to predict the disease and make some necessary recommendations in the patient screening. This study also helps reduce treatment costs and supports remote patient treatment. In this study, we built a prediction melasma model using Catboost machine learning algorithm to assist dermatolo-gists in predicting a person's risk of Melasma after entering his/her community information. People can use this model through an application to track their risk of Melasma. We built a dataset with relevant information combined input community data with the expertise of Melasma specialists to predict Melasma. Based on this dataset, we have statistically described the data characteristics as well as the correlated data parameters that may cause Melasma, then we use the CatBoost machine learning algorithm to build a prediction model to predict whether a person is infected to Melasma or not. The obtained results are going to be applied to assist in predicting whether a person may have Melasma with the input of community information combined with medical practice knowledge about the disease. From this result, it is possible to continue researching and applying artificial intelligence to support diagnosis and treatment of Melasma.
Mô tả: Proceedings of the 13th International Conference on Information Technology and Its Applications (CITA 2024); pp: 123-133.
Định danh: https://elib.vku.udn.vn/handle/123456789/4025
ISBN: 978-604-80-9774-5
Bộ sưu tập: CITA 2024 (Proceeding - Vol 2)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.